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Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle
thermostated systems

Tooru Taniguchi and Gary P. Morriss
School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

~Received 2 April 2002; published 6 December 2002!

The master equation approach to Lyapunov spectra for many-particle systems is applied to nonequilibrium
thermostated systems to discuss the conjugate pairing rule. We consider iso-kinetic thermostated systems with
a shear flow sustained by an external restriction, in which particle interactions are expressed as a Gaussian
white randomness. Positive Lyapunov exponents are calculated by using the Fokker-Planck equation to de-
scribe the tangent vector dynamics. We introduce another Fokker-Planck equation to describe the time-reversed
tangent vector dynamics, which leads to the calculation of the negative Lyapunov exponents. Using the
Lyapunov exponents provided by these two Fokker-Planck equations we show the conjugate pairing rule is
satisfied for thermostated systems with a shear flow in the thermodynamic limit which allow us to replace the
friction coefficient with a constant number. We also give an explicit form to connect the Lyapunov exponents
with the time correlation of the interaction matrix in a thermostated system with a color field.
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I. INTRODUCTION

The Lyapunov exponent is an essential concept to exp
the instability of orbits and the amount of the information
a dynamical system. It is introduced as an exponential
pansion~or contraction! rate of an infinitesimal perturbatio
of orbits, and its positivity implies that the system is chao
In general there is a Lyapunov exponent for each indep
dent direction of the infinitesimal perturbation of the orb
and the sorted set of such Lyapunov exponents is called
Lyapunov spectrum, and has been the subject of stud
many-particle systems. For example, the existence of its t
modynamic limit@1–3#, an effect of the rotational degrees
freedom of molecules@4#, its stepwise structure and th
Lyapunov modes~a wavelike structure in the tangent spac!
@5#, and a tracer particle effect@6# have been observed an
discussed in the Lyapunov spectra of many-particle cha
systems.

Some algorithms for numerical computations
Lyapunov spectra are well known~e.g., the algorithm due to
Benettinet al. @7,8# and the constraint method@9#!, and so
far full Lyapunov spectra have been calculated mainly us
numerical approaches. On the other hand, analytical calc
tions of the full Lyapunov spectra for many-particle syste
still remain as a difficult task at present. The master equa
approach, which was recently proposed, is one of the m
ods that can be used to calculate the full Lyapunov spe
for many-particle systems@10#. This method is applied to
systems with random particle interactions, and uses a ma
equation to describe the tangent space dynamics, which
lows the calculation of all individual positive Lyapunov e
ponents through the average of the magnitude of the tan
vector.

The master equation approach is characterized by u
random particle interactions, like in the other random ma
approaches@11–15# to the Lyapunov spectrum, and this cha
acteristic distinguishes this approach from approaches u
deterministic many-particle models. Especially, models
1063-651X/2002/66~6!/066203~11!/$20.00 66 0662
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the master equation approach are specified by the form
time correlation functions of the matrix expressing the p
ticle interactions, whereas models in the determinis
Hamiltonian dynamics are specified by the form of a pote
tial function, or more generally, of the Hamiltonian. In th
sense, using the master equation approach we move a
from considering particular Hamiltonian model systems. U
der the assumption that the random particle interactions
expressed by a Gaussian white randomness, the master
tion is simply attributed to a Fokker-Planck equation, a
leads to a direct connection between the Lyapunov expon
and the time correlation of the particle interaction matr
Systematic investigations to justify the Gaussian white r
dom assumption for particle interactions using a determin
tic many-particle Hamiltonian model have not been done
@16#, but it is expected that a Gaussian behavior of the in
action matrix may be justified by the central limit theorem
the number of particles goes to infinity, namely, in the th
modynamic limit. In order to justify the white random prop
erty of the time-correlations of the interaction matrix,~that is
their d-function relaxations!, as a description of a determin
istic chaotic system whose characteristic correlation ti
scale is not infinitesimal, it may be necessary to modify
time scale. Such a change of the time scale multiplies
Lyapunov exponents by a factor, but if we only consid
ratios of Lyapunov exponents, for example the Lyapun
exponents divided by the largest Lyapunov exponent, t
the problem of the time scale no longer appears explici
Under the assumption of this Gaussian white random in
action, the master equation approach reproduced the s
wise structure of the Lyapunov spectrum and the Lyapun
mode, which were actually observed in the numerical sim
lation of a deterministic many-hard-disk system.

A characteristic of the Lyapunov spectrum that is know
in Hamiltonian systems, is that the Lyapunov exponents
pear as a pair, namely, any positive Lyapunov exponent
companies a negative Lyapunov exponent with its oppo
sign@17#. This characteristic, which is based on the sympl
tic structure of the Hamiltonian mechanics, is not correct
©2002 The American Physical Society03-1
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non-Hamiltonian systems, but it is interesting to know how
is modified in quasi-Hamiltonian systems such as a Ham
tonian system coupled to a thermodynamic reservoir. T
problem has been considered in some thermostated dyna
where a term to extract the heat produced in the system
external force fields is included, and led to the proposa
the conjugate pairing rulefor thermostated systems, whic
claims that the sum of any Lyapunov exponent pair~exclud-
ing zero exponents! is not zero but a constant regardless
the exponent number@18,19#. This conjecture was confirme
by many following numerical calculations@20–22#. This also
led to the discovery that some thermostated systems con
hidden Hamiltonian structure@23,24#. The pairing rule is not
only interesting as a mathematical structure of the therm
stated system but is also valuable for a practical use;
conjugate pairing rule for the thermostated system allows
to calculate non-equilibrium transport coefficients~e.g., con-
ductivity and viscosity! from only one pair of the Lyapunov
exponents, such as the largest and smallest Lyapunov e
nents only@19,22,25,26#.

A problem is that the necessary and the sufficient con
tions for the conjugate pairing rule to hold for thermosta
systems is not clearly known. The conjugate pairing rule
the iso-kinetic thermostated system with a color field w
proved for the soft core interaction potential@27# and the
hard core interaction potential@24,28#, regardless of the
number of particles. A similar discussion was done in No´
Hamiltonian dynamics@29#. These works give the sufficien
conditions for the conjugate pairing rule. On the other ha
it was suggested numerically that it can be violated in
presence of a magnetic field@30# and in inhomogenously
thermostated systems such as a system under temper
gradient@31# or a system in which the peculiar momenta a
thermostated@32#. Another numerical work also suggeste
that it is not exact in the iso-energetic thermostat with a fin
number of particles@33#, although the iso-energetic thermo
stat should be equivalent to the iso-kinetic thermostat in
thermodynamic limit@34,35#. A special interest is the iso
kinetic thermostated system with a shear field, which is
scribed by the Sllod equation for the planar Coutte flow@36#.
The Sllod equation, so named because of its close relat
ship to the Dolls tensor algorithm has an explicit parame
expressing the shear rate to realize a shear flow, and is
ferent from the dynamics in which a shear flow is realiz
only by a boundary condition such as the Lees-Edwards
riodic boundary condition@36#. Early investigations sup
ported the conjugate pairing rule for the Sllod dynam
@19,20,37#. References@32,38# suggested a small deviatio
from the conjugate pairing rule. An analytical considerati
showed that the deviation from the conjugate pairing r
should be at most fourth order in the shear rate in the cas
a small shear rate in the thermodynamic limit@39#. However,
a recent numerical calculation with a more careful numb
ing of the Lyapunov exponents and with numerical error b
showed that within the numerical precision the conjug
pairing rule was satisfied@40#. After all these trials, a justi-
fication of the conjugate pairing rule for the iso-kinetic the
mostated system with a shear field still remains as an o
problem.
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This paper has two main purposes. First we generalize
master equation approach to the Lyapunov spectrum to n
equilibrium thermostated systems. Such a generalization
this approach to nonequilibrium systems is not known.
the second purpose of this paper we discuss the conju
pairing rule of the Lyapunov spectrum for the iso-kine
thermostated system with a shear field by using this gene
ized master equation approach. In this paper we concen
on the case where the particles interact with a Gaussian w
randomness. We also restrict our consideration in the t
modynamic limit, in which the fluctuations of the frictio
coefficient can be neglected@37#. In this case the friction
coefficient in the iso-kinetic thermostated system is sim
replaced by a constant. This is actually the case considere
Ref. @39#, but the proof of the conjugate pairing rule for th
Sllod dynamics has not known even in this simplified ca
One of difficult problems in the proof of the conjugate pa
ing rule for the Sllod dynamics is that this dynamics does
have them-symplectic structure, which is a generalized sy
plectic structure and have been essential in the past tria
prove the conjugate pairing rule for the thermostated s
tems. On the other hand, as will be shown in this paper
order to discuss the conjugate pairing rule using the ma
equation approach a structure like them-symplectic structure
is not necessary, and this is the reason why the master e
tion approach allows us to access to the problem of the c
jugate pairing rule for the Sllod dynamics, for which dete
ministic approaches have not been successful. Howev
problem in the master equation approach is that the tim
forward master equation for the tangent space dynamics
give the only positive branch of the Lyapunov spectrum~at
least in the equilibrium case!, although we need the negativ
branch of the Lyapunov spectrum to discuss the conjug
pairing rule for thermostated systems. To overcome t
problem in this paper we introduce another master equa
to describe the time-reversed tangent vector dynamics,
propose a method to calculate the negative branch of
Lyapunov spectrum using this time-reversed master eq
tion. Under the assumptions of the Gaussian white rand
interactions and the constant friction coefficient we sh
that the conjugate pairing rule for the thermostated sys
with a shear field given by the Sllod equation is satisfied.
a special case we also discuss briefly an explicit form
connect the Lyapunov exponents with the time-correlation
the interaction matrix in a thermostated system withou
shear field.

II. ISOKINETIC THERMOSTATED SYSTEM WITH A
SHEAR FIELD AND ITS TANGENT VECTOR DYNAMICS

We consider nonequilibrium systems with an iso-kine
thermostat. Our consideration includes the case wher
shear flow is sustained by an external restriction, and
simplicity we consider a two-dimensional system consist
of N particles with the same massm. We introduceq( j )(t)
[„qx

( j )(t),qy
( j )(t)…T andp( j )(t)[„px

( j )(t),py
( j )(t)…T as the spa-

tial coordinate vector and the momentum vector of thej th
particle, respectively, at timet with the transpose operatio
T. ~Note that all vectors in this paper are introduced as c
3-2
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umn vectors.! Equations forq( j )(t) andp( j )(t) are expressed
as @36#

dq( j )~ t !

dt
5

1

m
p( j )~ t !1gJ2q( j )~ t ! ~1!

dp( j )~ t !

dt
52

]U~ t !

]q( j )~ t !
2@gJ21a~ t !I 2#p( j )~ t !, ~2!

where U(t) is the potential energy as a function
q( j )(t), j 51,2, . . . ,N andt only, and we introduceJ2k is the
2k32k matrix defined by

J2k[S 0k I k

0k 0k
D ~3!

with the k3k identical matrixI k and thek3k null matrix
0k . Hereg is the shear rate as an external parameter, nam
a constant gradient of thex component of the local velocity
in the y direction, anda(t) is defined by

a~ t ![2

(
j 51

N

p( j )~ t !TS ]U~ t !

]q( j )~ t !
1gJ2p( j )~ t !D

(
j 51

N

up( j )~ t !u2
~4!

so that the total kinetic energy is constant in tim
d@( j 51

N up( j )(t)u2/(2m)#/dt50. Eqs. ~1! and ~2! are called
the Sllod equation for the planar Coutte flow with the iso
netic thermostat, and gives the model for the system dri
by external fields and~or! a shear rate with an attached he
reservoir which removes the energy generated inside the
tem and maintains the temperature of the system consta
in time. As an example described by Eqs.~1! and ~2!, other
than the system with a shear field, we may mention the c
field system in which the system consists of many partic
with charges of different signs and is driven by an exter
electric field@22,41#.

In general, the quantitya(t), which is interpreted as the
friction coefficient, depends on the coordinates and the m
menta of the particles, so is variable in time. However, it
known that the fluctuation of the quantitya(t) is small in a
system consisting of many particles@37#. ~For a justification
of this point by the kinetic approach see Ref.@42#, which
shows that the quantitya(t) fluctuates with the order o
1/AN around a fixed value.! Based on this fact, in this pape
we consider only the system which consists of enough p
ticles so that the friction coefficienta(t) in Eq. ~2! can be
replaced by a fixed constantā.

For a convenience we represent the 4N-dimensional
phase space vector G(t) as a vector
„qx

(1) (t), qx
(2) (t), . . . ,qx

(N) (t), qy
(1) (t), qy

(2) (t), . . . ,qy
(N) (t) ,

px
(1) (t), px

(2) (t), . . . ,px
(N) (t), py

(1) (t), py
(2)(t), . . . ,py

(N)(t)…T.
Using this notation and the assumption explained in the p
vious paragraph we obtain the equation
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ddG~ t !

dt
5L~ t !dG~ t ! ~5!

for the tangent vectordG(t). Here the matrixL(t) is given
by

L~ t ![S F I 2N /m

R~ t ! C
D ~6!

with 2N32N matricesF, C, andR defined by

F[gJ2N , ~7!

C[2gJ2N2āI 2N , ~8!

R~ t ![2
]2U~ t !

]q~ t !]q~ t !
, ~9!

where we introduced q(t) as a vector
„qx

(1)(t),qx
(2)(t), . . . ,qx

(N)(t),qy
(1)(t),qy

(2)(t), . . . ,qy
(N)(t)…T.

III. RANDOM INTERACTIONS AND MASTER
EQUATIONS FOR THE TANGENT VECTOR DYNAMICS

In this section we introduce a random interaction betwe
the particles, and obtain the two kinds of master equati
corresponding to the time-forward tangent vector dynam
and the time-reversed tangent vector dynamics by using
Kramers-Moyal expansion technique.

A. Fokker-Planck equation for the forward dynamics of the
tangent vector

We consider the case that each particle interacts with
other particles randomly enough so that the matrixR(t)
[„Rjk(t)… can be regarded as a Gaussian white random
trix satisfying the conditions

^Rm1n1
~ t1!Rm2n2

~ t2!•••Rm2n21n2n21
~ t2n21!&50, ~10!

^Rm1n1
~ t1!Rm2n2

~ t2!•••Rm2nn2n
~ t2n!&

5(
Pd

Dm j 1
n j 1

m j 2
n j 2

Dm j 3
n j 3

m j 4
n j 4
•••Dm j 2n21

n j 2n21
m j 2n

n j 2n

3d~ t j 1
2t j 2

!d~ t j 3
2t j 4

!•••d~ t j 2n21
2t j 2n

! ~11!

for any integern and a 4th rank constant tensorD jkln , where
we take the sum over only the independent permuta
Pd :(1,2, . . . ,2n)→( j 1 , j 2 , . . . ,j 2n), and the bracket̂•••&
means the ensemble average over random processes
tensorD jkln satisfies the conditions

Dln jk5D jkln , ~12!

D jknl5Dk jln5D jkln , ~13!

which are derived from the relationD jklnd(s2t)
5^Rjk(s)Rln(t)& and the symmetry property of the matr
R(t).
3-3
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Under the randomness conditions~10! and ~11! the time-
evolutional equation~5! is regarded as a stochastic equati
of the Langevin type, and its corresponding master equa
for the the probability densityr (1)(dG,t) for the tangent
vectordG at time t is given by

]

]t
r (1)~dG,t !52 (

m51

2N

(
n51

2N
]

]dqm

3S Fmndqn1
dmn

m
dpnD r (1)~dG,t !

2 (
m51

2N

(
n51

2N
]

]dpm
Cmndpnr (1)~dG,t !

1 (
m51

2N

(
n51

2N

(
m851

2N

(
n851

2N
1

2
Dm8mn8ndqmdqn

3
]2

]dpm8]dpn8

r (1)~dG,t ! ~14!

applying the Kramers-Moyal expansion technique to the
namics~5!. Heredqj anddpj are thej th components of the
coordinate partdq and the momentum partdp in the tangent
vector dG5(dq,dp)T, respectively, andFmn and Cmn are
the matrix elements of the matrixF andC defined by Eqs.
~7! and~8!, respectively. The derivation of Eq.~14! is given
in Appendix A. Equation~14! in the special case ofF
502N and C502N have already been used to discuss
stepwise structure of the Lyapunov spectrum for a ma
particle Hamiltonian system@10#.

B. Anti-Fokker-Planck equation for the time-reversed
dynamics of the tangent vector

As shown in Ref.@10#, in the case ofg50 andā50 the
Fokker-Planck equation~14! provides the positive branch o
Lyapunov exponents as the time-averaged exponential ra
the randomness average by the probability densityr (1)(G,t)
in the time evolution of infinitesimal perturbations of th
dynamical variables. However, this method does not prov
directly the negative branch of Lyapunov exponents, beca
in the stochastic systemthe randomness average ofthe dis-
tance between the infinitesimal nearby trajectories should
shrink in the infinite time limit. This was not a problem i
the Hamiltonian system discussed in Ref.@10#, because in
the Hamiltonian system the absolute values of the nega
Lyapunov exponents are the same with the posit
Lyapunov exponents@17#. However, in the thermostated sy
tem discussed in this paper such a simple relation of
negative and the positive Lyapunov exponents cannot be
pected any more. In order to overcome this problem and
provide the negative branch of Lyapunov exponents us
the master equation approach directly, we use the fact
the negative Lyapunov exponents can be regarded as
positive Lyapunov exponents for the time-reversed mot.
This fact has been used in some works to calculate the n
tive Lyapunov exponents for chaotic systems@26,43,44#.
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In the iso-kinetic thermostated system with a shear fi
the time-reversed motion is expressed by the ‘‘time-rever
mapping’’@36#: q→q, p→2p andg→2g. The transforma-
tion g→2g is justified by the fact that the direction of th
shear flow changes to the opposite direction in the tim
reversed motion. This justifies the time-reversal transform
tion ā→2ā for the friction coefficient by Eq.~4!. The time-
reversed mapping leads to the time-reversed operatioT̂
defined by

dq→dq, ~15!

dp→2dp, ~16!

F→2F, ~17!

C→2C, ~18!

for the tangent vector dynamics, noting the relations~7! and
~8! to connect the matricesF and C with the shear rateg
and the friction coefficientā. It is important to note that the
tensorD jkln itself is invariant under the time-reversed ma
ping.

Now we introduce the Fokker-Planck equation for t
probability densityr (2)(dG,t) for the time-reversed tangen
vector at timet as the transformed equation of the Fokke
Planck equation~14! by the time-reversed operationT̂ and
the transformationt→2t, namely

]

]t
r (2)~dG,t !52 (

m51

2N

(
n51

2N
]

]dqm

3S Fmndqn1
dmn

m
dpnD r (2)~dG,t !

2 (
m51

2N

(
n51

2N
]

]dpm
Cmndpnr (2)~dG,t !

2 (
m51

2N

(
n51

2N

(
m851

2N

(
n851

2N
1

2
Dm8mn8ndqmdqn

3
]2

]dpm8]dpn8

r (2)~dG,t !. ~19!

In other words, if the dynamical evolution operator of th
probability densityr (1)(dG,t) is expressed by the operato
exp(P̂t) „so that r (1)(dG,t)5exp(P̂t)r(1)(dG,0) … with a
time-independent operatorP̂ then the dynamical evolution
operator of the probability densityr (2)(dG,t) is given by the
operator exp(2T̂P̂T̂t). Equation~19! is simply the equation
with the opposite sign of the diffusion term to the forwa
Fokker-Planck equation~14!, and is interpreted as the mast
equation to describe the time evolution of the tangent vec
whose initial condition is the time-reversed initial conditio
to the Fokker-Planck equation~14!. We call this equation for
the probability densityr (2)(dG,t) the ‘‘anti-Fokker-Planck
equation’’ in this paper, and calculate the negative Lyapun
3-4
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MASTER EQUATION APPROACH TO THE CONJUGATE . . . PHYSICAL REVIEW E 66, 066203 ~2002!
exponents as the exponential rate of the randomness ave
by the probability densityr (2)(dG,t) in the time evolution
of infinitesimal perturbations of the dynamical variables
the minus infinite time.

It is important to note the difference between the an
Fokker-Planck equation~19! and the so called ‘‘backward
Fokker-Planck equation’’@46#. The backward Fokker-Planc
equation describes the dynamics before an initial time
which the initial condition is the same as that in the forwa
Fokker-Planck equation that describes the dynamics afte
initial time. However, in order to calculate the negati
Lyapunov exponents from the time-reversed motion,
must use the different initial condition which has the opp
site sign of the momentum to the initial condition in th
forward Fokker-Planck equation. In the equilibrium case
pressed byg50 and ā50 the backward Fokker-Planc
equation coincides with the anti-Fokker-Planck equation,
otherwise it cannot be used to calculate the nega
Lyapunov exponents.

The anti-Fokker-Planck equation is analogous to the a
Lorentz-Boltzmann equation which was introduced to cal
late the negative Lyapunov exponents using the kinetic
proach @26,44,45#. In this approach the anti-Lorentz
Boltzmann equation is given as the Lorentz-Boltzma
equation where the collision operator has the opposite sig
the ordinary Lorentz-Boltzmann equation in an equilibriu
or a nonequilibrium stationary state.

At least, in the equilibrium case expressed byg50 and
ā50 the anti-Fokker-Planck equation must provide t
negative Lyapunov exponents as the opposites of the pos
Lyapunov exponents calculated by using the Fokker-Pla
equation~14!. In the following section we show that it i
actually a special case of more general results.

IV. CONJUGATE PAIRING RULE FOR THERMOSTATED
SYSTEMS WITH A SHEAR

We have to know the time evolution of the amplitude
the tangent vector in order to calculate the Lyapunov ex
nents. Such a time evolution for the forward movement~the
time-reversed movement! is expressed as the dynamics of t
diagonal elements of the matrixY(1)(t) „the matrixY(2)(t)…
given by

Y(6)~ t ![^dqdqT& t
(6) . ~20!

Here the bracket̂•••& t
(6) means to take the average by t

probability densityr (6)(dG,t), namely,

^X~dG!& t
(6)[E ddGX~dG!r (6)~dG,t ! ~21!

for any function X(dG) of dG. In Ref. @10# the positive
Lyapunov exponents were calculated by the time-avera
exponential rate of the diagonal elements of an orthogo
transformed matrix of Y (1)(t). We get the negative
Lyapunov exponents from the matrixY (2)(t) by a similar
procedure. The introduction of Lyapunov exponents by
06620
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spatial coordinate part only~or the momentum part only! of
the tangent vector has been used previously by Refs.@44,47#.

We introduce the matrixỸ (6)(t) defined by

Ỹ (6)~ t ![Y (6)~6t !e6āt. ~22!

As shown in Appendix B, the matrixỸ (6)(t) satisfies the
differential equation

d4Ỹ (6)~ t !

dt4
2

1

2 FV2
d2Ỹ (6)~ t !

dt2
1

d2Ỹ (6)~ t !

dt2
~V2!TG

1
1

16
@V4Ỹ (6)~ t !22V2Ỹ (6)~ t !~V2!T1Ỹ (6)~ t !

3~V4!T#2
2

m2
D̂H dỸ (6)~ t !

dt J 50, ~23!

where we assumed the probability densityr (6)(dG,t) to be
zero at the boundary of the tangent space. HereV is the
(2N)3(2N) matrix defined by

V[F2C. ~24!

andD̂ is the linear operator to map any (2N)3(2N) matrix
X[(Xjk) to the (2N)3(2N) matrix D̂$X%[„(D̂$X%) jk… de-
fined by

~D̂$X%! jk[ (
m51

N

(
n51

N

D j mknXmn . ~25!

It may be noted that Eq.~23! for the matrixỸ (6)(t) is in-
variant under the transformationV→2V.

We can choose the initial probability densityr (1)(dG,0)
arbitrarily to calculate the positive Lyapunov exponents.
the other hand in order to derive the corresponding nega
Lyapunov exponents we assume the initial probability d
sity r (2)(dG,0) for the time-reversed tangent vector to s
isfy the conditiondkỸ (2)(t)/dtku t505dkỸ (1)(t)/dtku t50 , k
50,1,2,3 at the initial timet50. Under this assumption i
follows from Eq.~23! that

Y (2)~2t !e2āt5Y (1)~ t !eāt, ~26!

because the quantitiesỸ (1)(t) and Ỹ (2)(t) defined by Eq.
~22! satisfy the same differential equation~23! and have the
same initial condition. Therefore, the diagonal eleme
Ýj j

(6)(t) of any orthogonal-transformed matrix ofY (6)(t)
must satisfy the relation

Ýj j
(2)~2t !5Ýj j

(1)~ t !e2āt. ~27!

This equation connects the time-forward evolution and
time-reversed evolution in the amplitudes of the spatial p
of the tangent vector in the thermostated system.

The j th positive~or zero! Lyapunov exponentl j
(1) and its

conjugate negative~or zero! exponentl j
(2) are given by
3-5
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l j
(6)5 lim

t5→6`

1

2t
ln

Ýj j
(6)~ t !

Ýj j
(6)~0!

. ~28!

The quantity Ýj j
(6)(t) satisfies the conditionÝj j

(1)(0)
5Ýj j

(2)(0) at the initial time, and using Eqs.~27! and ~28!
we obtain

l j
(1)1l j

(2)52ā. ~29!

This is the conjugate pairing rule of the Lyapunov spectr
for the iso-kinetic thermostated system with a shear field
is clear that it is attributed to the pairing rule of the Ham
tonian system in the case ofā50.

V. CONJUGATE PAIRING RULE FOR A COLOR FIELD

For an actual calculation of the Lyapunov spectrum for
iso-kinetic thermostated system by the master equation
proach we have to know the value of tensorD jkln and to
solve the differential equation~23! for the matrix Ỹ (6)(t).
Let us discuss these points briefly by using a case witho
shear field such as a color field system@22,41#, namely

g50. ~30!

For simplicity in this section we also assume that the ten
D jkln is expressed as the multiplication of the matrix e
ments of a symmetric (2N)3(2N) matrix W[(Wjk):

D jkln5WjkWln . ~31!

Under this assumption the conditions~12! and~13! are auto-
matically satisfied. This assumption was also used in R
@10# to discuss the stepwise structure of Lyapunov spect

As shown in Appendix C, under the assumptions~30! and
~31! the equation of the matrixỸ (6)(t) is simplified to

d3Ỹ (6)~ t !

dt3
2ā2

dỸ (6)~ t !

dt
2

2

m2
WỸ (6)~ t !W50. ~32!

It is shown that Eq.~23! is given by taking the time differ-
ential in both the sides of Eq.~32!. Using the orthogona
matrix V diagonalizing the matrixW, namely

~VTWV! jk5v jd jk ~33!

with a real eigenvaluev j , the quantityÝj j
(6)(t) is expressed

as the diagonal element of the matrixÝ(6)(t)[„Ýjk
(6)(t)…

defined by

Ý(6)~ t !5VTY (6)~ t !V. ~34!

Using Eq. ~34! we can solve the equation for the quant
Ýj j

(6)(t) derived from Eq.~32!, and by using Eqs.~22!, ~28!,
and ~34! the Lyapunov exponents are given by

l j
(6)52

ā

2
6

1

2
S L j1

ā2

3L j
D , ~35!
06620
It

n
p-

a

r
-

f.
.

whereL j is defined by

L j[F S v j

m D 2

1AS v j

m D 4

2S ā2

3
D 3G1/3

. ~36!

@See Appendix C about a derivation of Eq.~35!.# It is clear
that the Lyapunov exponents given by Eq.~35! satisfy the
conjugate pairing rule~29!.

Concerning the expression~35! for the Lyapunov expo-
nent it is important to note that the tensorD jkln can depend
on external force fields. This implies that the eigenvaluev j

of the matrixW can depend on the friction coefficientā. If
we were to assume the quantityv j to be independent of the
friction coefficient ā, then we obtain the expression of th
Lyapunov exponents as l j

(6)56uv j /(2m)u2/32ā/2

1O(ā2) from Eq. ~35! in the case ofuāu<A3uv j /mu2/3.
However, this is not consistent with the numerical results
a deterministic many-hard-disk system with a color field
which the negative Lyapunov exponents rather increase
the value of the friction coefficient increases@22#. This con-
sideration suggests that we should not neglect the exte
force field dependence of the correlation amplitudeD jkln at
least in the color field case. The dependence of the ten
D jkln on the shear rate and the external force fields should
a subject for a separated paper, although the conjugate
ing rule of the Lyapunov spectrum is correct regardless
their dependence as shown in this paper.

VI. CONCLUSION AND REMARKS

In this paper, we have applied the master equation
proach to Lyapunov spectra to nonequilibrium iso-kine
thermostated systems in order to discuss a conjugate pa
rule. We considered two-dimensional many-particle syst
with Gaussian white random interactions between the p
ticles. In this system the positive Lyapunov exponents
calculated by a~forward! Fokker-Planck equation for the tan
gent vector dynamics. We proposed a method to calculate
negative Lyapunov exponents by a time-reversed ma
equation, especially the anti-Fokker-Planck equation wh
the diffusion term has the opposite sign to the forwa
Fokker-Planck equation. Using the Lyapunov exponents
culated by these two Fokker-Planck equations we showed
conjugate pairing rule of the Lyapunov spectrum for is
kinetic thermostated systems with a shear field given by
Sllod equation in the thermodynamic limit. We also gave
concrete form to connect the Lyapunov exponents with
time-correlation of the interaction matrix in a thermostat
system without a shear field.

We discussed the conjugate pairing rule based on the
kinetic thermostat in the thermodynamic limit. However, it
known that the iso-kinetic thermostat is formally equivale
to other thermostats such as the iso-energetic thermost
the thermodynamic limit@35#. In this sense our result shoul
be correct in systems with such other thermostats, more
plicitly as far as the friction coefficient can be regarded a
constant even in a finite number of particle systems.

In order to get the anti-Fokker-Planck equation we us
3-6
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the fact that the shear rateg changes its sign in the tim
reversed motion. However, this time-reversed change of
sign of the shear rate to get the anti-Fokker-Planck equa
may not be essential to obtain the negative Lyapunov ex
nents, if the Lyapunov exponents are even functions of
shear rate. We have not proved the invariance of
Lyapunov exponents under the transformationg→2g in
this paper, but the invariance of Eq.~23! under the transfor-
mation V→2V implies that the Lyapunov exponents a
invariant under this transformation.

We can show that all the Lyapunov exponentsl j
(1) (l j

(2))
are non-negative~nonpositive! in the case ofg50 ~See Ap-
pendix C!. This implies that in this case the number of t
positive Lyapunov exponents should be equal to the num
of the negative Lyapunov exponents, possibly except fo
few Lyapunov exponents making pairs with zero Lyapun
exponents. However, we have not proved that it is also c
rect in the presence of a shear field:gÞ0. Concerning this
point we should notice that a numerical calculation of t
Lyapunov spectrum for the Sllod equations~1! and ~2!
showed that in the case of a high shear rate the numbe
positive Lyapunov exponents can be less than the numbe
negative Lyapunov exponents@40#. Therefore, it should be
interesting to check whether the master equation approac
the Lyapunov spectrum can describe such a situation or

It should be noted that the discussion of this paper d
not conclude that the conjugate pairing rule of the Lyapun
spectrum for the thermostated system with a shear field m
be satisfied rigorously in deterministic chaotic systems.
show the conjugate pairing rule in this paper we assumed
Gaussian white randomness~10! and ~11! for the particle
interactions, and there is no guarantee that we can justify
conjugate pairing rule by the master equation approach u
a more general random interaction of particles, for exam
under the non-Gaussian randomness of the particle inte
tion matrix which leads to a more general master equa
for the tangent vector rather than a simple Fokker-Pla
equation~14!. A generalization of the conjugate pairing ru
by the master equation approach to a more general ran
interaction remains as one of the important future proble
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APPENDIX A: MASTER EQUATION FOR
THE TANGENT VECTOR

In this appendix we derive the Fokker-Planck equat
~14! for the tangent vector dynamics. Using the Krame
Moyal expansion the dynamics of the probability dens
r (1)(dG,t) is given by@46#

]r (1)~dG,t !

]t
5 (

n51

`

(
j 151

2N

(
j 251

2N

••• (
j n51

2N

~21!n

3
]nJ j 1 j 2••• j n

(n) ~dG,t !r (1)~dG,t !

]dG j 1
]dG j 2

•••]dG j n

, ~A1!
06620
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whereJ j 1 j 2••• j n

(n) (dG,t) is defined by

J j 1 j 2••• j n

(n) ~dG,t ![
1

n!
lim
s→0

1

s
^@dG j 1

~ t1s!2dG j 1
~ t !#

3@dG j 2
~ t1s!2dG j 2

~ t !#•••

3@dG j n
~ t1s!2dG j n

~ t !#&udG(t)5dG ~A2!

anddG j (t) is the j th component of the tangent vectordG(t).
Using Eq.~5! we obtain

dG~ t1s!2dG~ t !5H T
←

expF E
t

t1s

dtL~t!G21J dG~ t !

5 (
n51

` E
t

t1s

dtnE
t

tn
dtn21•••E

t

t2
dt1

3L~tn!L~tn21!•••L~t1!dG~ t !.

~A3!

It follows from Eqs.~6!, ~10!, ~11!, ~A2!, and~A3! that

J(1)~dG,t ![„J1
(1)~dG,t !,J2

(1)~dG,t !, . . . ,J2N
(1)~dG,t !…T

5 lim
s→0

1

s
^@dG~ t1s!2dG~ t !#&udG(t)5dG

5 lim
s→0

1

sEt

t1s

dt^L~t!&dG5S Fdq1dp/m

Cdp/m D
~A4!

and

J (2)~dG,t ![„J jk
(2)~dG,t !…5 lim

s→0

1

2s
^@dG~ t1s!2dG~ t !#

3@dG~ t1s!2dG~ t !#T&udG(t)5dG

5 lim
s→0

1

2sEt

t1s

dkE
t

t1s

dt^L~k!dGdGTL~t!T&

5S 02N 02N

02N h~dq!
D , ~A5!

whereh(dq)[„hjk(dq)… is defined by

h jk~dq![
1

2 (
m51

N

(
n51

N

D j mkndqmdqn . ~A6!

Here the only nonzero contributions come from then51
term of Eq.~A3!. For generaln, the number ofd functions
from Eq.~11! must be only one less than the number of tim
integrals, to give a nonzero contribution. It is straightforwa
to show that this never happens forn.1. Concerning the
terms includingJ j 1 j 2••• j n

(n) (dG,t), n53,4, etc., in the right-

hand side of Eq.~A1! we obtain
3-7
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J j 1 j 2••• j n

(n) ~dG,t !50, n53,4, . . . , ~A7!

because of the Gaussian white properties~10! and~11! of the
random matrixR(t). Using Eqs.~A1!, ~A4!, ~A5!, and~A7!
we obtain the Fokker-Planck equation~14!.

APPENDIX B: EQUATION FOR THE MATRIX Ỹ „Á…

In this appendix we give details of the derivation of E
~23! from Eqs.~14!, ~19!, and ~20!. We start this derivation
by introducing the (2N)3(2N) matrices F (6)(t) and
G (6)(t) defined by

F (6)~ t ![^dqdpT& t
(6) , ~B1!

G (6)~ t ![^dpdpT& t
(6) . ~B2!

Equations~14! and ~19! lead to

dY (6)~ t !

dt
5FY (6)~ t !1Y (6)~ t !FT1

1

m
@F (6)~ t !

1F (6)~ t ! T#, ~B3!

dF (6)~ t !

dt
5FF (6)~ t !1F (6)~ t !CT1

1

m
G (6)~ t !, ~B4!

dG (6)~ t !

dt
5CG (6)~ t !1G (6)~ t !CT6D̂$Y (6)~ t !%

~B5!

for the matricesY (6)(t), F (6)(t), andG (6)(t) with the op-
erator D̂ defined by Eq.~25!. Here, to derive Eq.~B5! we
used the relation~12!.

Equations~B3!, ~B4!, and~B5! are equivalent to

dY̆ (6)~ t !

dt
5F̆(6)~ t !P~ t !T1P~ t !F̆(6)~ t ! T, ~B6!

dF̆(6)~ t !

dt
5P~ t !Ğ(6)~ t !, ~B7!

dĞ(6)~ t !

dt
56 D̂̃t$Y̆

(6)~ t !%, ~B8!

whereY̆ (6)(t), F̆(6)(t), andĞ(6)(t) are defined by

Y̆ (6)~ t ![e2FtY (6)~ t !e2FTt, ~B9!

F̆(6)~ t ![e2FtF (6)~ t !e2CTt, ~B10!

Ğ(6)~ t ![e2CtG (6)~ t !e2CTt, ~B11!

andP(t) is the (2N)3(2N) matrix defined by

P~ t ![
1

m
e2Vt ~B12!
06620
.

with the matrixV defined by Eq.~24!, and D̂̃ t$•••% is de-
fined by

D̂̃t$X%[e2CtD̂$eFtXeFTt%e2CTt ~B13!

for any (2N)3(2N) matrix X. Here we used the relation

FC5CF, ~B14!

so that we have the equation exp$2Ft%exp$Ct%5exp$2(F
2C)t%.

Noting that the matrixĞ(6)(t) is symmetric and the in-
verse matrix of the matrixP(t) is given by P(t)21

5m exp$Vt%, we obtain

2Ğ(6)~ t !5P~ t !21
dF̆(6)~ t !

dt
1

dF̆(6)~ t ! T

dt
@P~ t !21#T

5P~ t !21
d2Y̆ (6)~ t !

dt2
@P~ t !21#T1P~ t !21F̆(6)~ t !VT

1VF̆(6)~ t ! T@P~ t !21#T ~B15!

by using Eqs.~B6!, ~B7!, and ~B12!. Besides, using Eqs
~B6!, ~B7!, and~B12! we obtain

d

dt
$P~ t !21F̆(6)~ t !VT1VF̆(6)~ t ! T@P~ t !21#T%

5VP~ t !21
dY̆ (6)~ t !

dt
@P~ t !21#TVT1Ğ(6)~ t !VT

1VĞ(6)~ t !, ~B16!

where we again used the relationĞ(6)(t)T5Ğ(6)(t). It fol-
lows from Eqs.~B6!, ~B7!, and~B8! that

62D̂̃t$Y̆
(6)~ t !%5

d

dt
P~ t !21

d2Y̆ (6)~ t !

dt2
@P~ t !21#T

1VP~ t !21
dY̆ (6)~ t !

dt
@P~ t !21#TVT

1Ğ(6)~ t !VT1VĞ(6)~ t !. ~B17!

Taking the time differential of both the sides of Eq.~B17!,
and using Eq.~B8! we obtain

d2

dt2
P~ t !21

d2Y̆ (6)~ t !

dt2
@P~ t !21#T

1V
d

dt
P~ t !21

dY̆ (6)~ t !

dt
@P~ t !21#TVT

72
d

dt
D̂̃t$Y̆

(6)~ t !%6 D̂̃t$Y̆
(6)~ t !%VT

6V D̂̃t$Y̆
(6)~ t !%50. ~B18!
3-8
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This is the equation for the quantityY̆ (6)(t) only.
Now we derive the equation forỸ (6)(t) defined by Eq.

~22! from Eq. ~B18! for Y̆ (6)(t) defined by Eq.~B9!. We
note

V52F1āI 2N ~B19!

522C2āI 2N ~B20!

which is derived from Eqs.~7!, ~8!, and ~24!. Using Eqs.
~22!, ~B9!, and ~B19! the matricesY̆ (6)(t) are connected
with the matrixỸ (6)(t) by

Y̆ (6)~ t !5e2Vt/2Ỹ (6)~6t !e2VTt/2. ~B21!

We introduce the multiplicationX^ Y of X and Y which is
defined by

X^ Y[
1

2
@XY1~XY!T# ~B22!

for any square matricesX andY of the same size. This mul
tiplication is used in the relation

d

dt
e6Vt/2Z~ t !e6VTt/25e6Vt/2FdZ~ t !

dt
6V ^ Z~ t !Ge6VTt/2

~B23!

satisfied by any (2N)3(2N) symmetric matrixZ(t) as a
function of t. Noting Eqs.~B22! and ~B23!, Eq. ~B21! leads
to

P~ t !21
dY̆ (6)~ t !

dt
@P~ t !21#T5m2eVt/2FdỸ (6)~6t !

dt
2V

^ Ỹ (6)~6t !GeVTt/2, ~B24!

P~ t !21
d2Y̆ (6)~ t !

dt2
@P~ t !21#T5m2eVt/2H d2Ỹ (6)~6t !

dt2
22V

^
dỸ (6)~6t !

dt
1V ^ @V

^ Ỹ (6)~6t !#J eVTt/2, ~B25!

where we used the relationY̆ (6)(t)T5Y̆ (6)(t). MoreoverD̂̃t

operated on the matrixY̆ (6)(t) is connected withD̂ operated
on the matrixỸ (6)(6t) as

D̂̃t$Y̆
(6)~ t !%5eVt/2D̂$Ỹ (6)~6t !%eVTt/2, ~B26!

where we used Eqs.~22!, ~B9!, ~B13!, and ~B20!. Inserting
Eqs. ~B24!, ~B25!, and ~B26! into Eq. ~B18! and using Eq.
~B23! we obtain
06620
d4Ỹ (6)~6t !

dt4
22V ^ FV ^

d2Ỹ (6)~6t !

dt2
G

1V
d2Ỹ (6)~6t !

dt2
VT1V ^ @V ^ †V ^ @V ^ Ỹ (6)

~6t !#‡#2V†V ^ @V ^ Ỹ (6)~6t !#‡VT

7
2

m2
D̂H dỸ (6)~6t !

dt J 50. ~B27!

Equation~B27! is equivalent to

d4Ỹ (6)~6t !

dt4
2

1

2 FV2
d2Ỹ (6)~6t !

dt2
1

d2Ỹ (6)~6t !

dt2
~V2!TG

1
1

16
@V4Ỹ (6)~6t !22V2Ỹ (6)~6t !~V2!T1Ỹ (6)~6t !

3~V4!T#7
2

m2
D̂H dỸ (6)~6t !

dt J 50. ~B28!

By exchangingt with 6t in Eq. ~B28! we obtain Eq.~23!.

APPENDIX C: LYAPUNOV EXPONENTS IN THE COLOR
FIELD CASE

In this appendix we consider the case with no shear fi
using the condition~30!, and derive Eq.~32! under the as-
sumption~31!. We also give a derivation of Eq.~35! briefly.

Under the condition~30!, the matrixV defined by Eq.
~24! is simply an identical matrix multiplied by a consta
and is given by

V5āI 2N , ~C1!

and the matrixP(t) defined by Eq.~B12! and the operator

D̂̃t$•••% defined by Eq.~B13! are given by

P~ t !5
1

m
e2ātI 2N , ~C2!

D̂̃t$X%5e2ātD̂$X% ~C3!

for any (2N)3(2N) matrix X. Noting Eqs.~C2! and ~C3!

and the relationY̆ (6)(t)5Y (6)(t), Eqs.~B6!, ~B7!, and~B8!
are simply attributed into

dY (6)~ t !

dt
5

1

m
e2āt@F̆(6)~ t !1F̆(6)~ t ! T#, ~C4!

dF̆(6)~ t !

dt
5

1

m
e2ātĞ(6)~ t !, ~C5!

dĞ(6)~ t !

dt
56e2ātD̂$Y (6)~ t !%. ~C6!
3-9
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Noting that the matrixĞ(6)(t) is symmetric, Eqs.~C4!, ~C5!,
and ~C6! lead to the differential equation

d

dt
eāt

d

dt
eāt

d

dt
Y (6)~ t !56

2

m2
e2ātD̂$Y (6)~ t !% ~C7!

for the matrixY (6)(t) only.
Now we consider the derivation of the equation for t

matrix Ỹ (6)(t) @defined by Eq.~22!# from Eq. ~C7! for the
matrix Y (6)(t). It follows from Eqs.~22! and ~C7! that

d3Ỹ (6)~6t !

dt3
2ā2

dỸ (6)~6t !

dt
7

2

m2
D̂$Ỹ (6)~6t !%50.

~C8!

By exchangingt with 6t in Eq. ~C8! and using Eqs.~25! and
~31! we obtain Eq.~32!.

Using Eqs.~32! and ~34! the real functionj j
(6)(t) of t

defined by

j j
(6)~ t ![„VTỸ j j

(6)~ t !V…j j 5Ýj j
(6)~6t !e6āt ~C9!

satisfies the equation

d3j j
(6)~ t !

dt3
2ā2

dj j
(6)~ t !

dt
2

2v j
2

m2
j j

(6)~ t !50. ~C10!

The real solution of the linear differential equation~C10! is
expressed as

j j
(6)~ t !5 (

k51

3

Re$y j
(k)ez j

(k)t%, ~C11!

wherey j
(k) , j 51,2,3 are constants determined by the init

condition, andz j
(k) , j 51,2,3 are the three solutions of th

equation
y

-

06620
l

z32ā2z2
2v j

2

m2
50 ~C12!

for z. Here Re$X% means to take the real part of any imag
nary numberX. We sort the quantitiesz j , j 51,2,3 as
Re$z j

(1)%>Re$z j
(2)%>Re$z j

(3)%, so that using Eqs.~28!, ~34!,
and ~C9! the Lyapunov exponentl j

(6) is expressed as

l j
(6)56 lim

t5→1`

1

2t
ln

j j
(6)~ t !e7āt

j j
(6)~0!

52
ā

2
6

1

2
Re$z j

(1)%.

~C13!

It follows from Eq. ~C12! that z5z j
(1) is a real solution of

Eq. ~C12! and satisfies the conditionsz j
(1)>uāu limv j→0z j

(1)

5uāu, noting that the pointz5z j
(1) is the maximum inter-

secting point of the graphsy5z32ā2z and y52v j
2/m2 in

the z-y plain. This means that the Lyapunov exponentsl j
(1)

(l j
(2)) must be non-negative~nonpositive!. More concretely

the quantityz j
(1) is given by

z j
(1)5L j1

ā2

3L j
~C14!

with the quantityL j defined by Eq.~36!. We can check that
in the case ofuāu<A3uv j /mu2/3 the quantitiesL j and z j

(1)

are both real numbers, and in the case ofuāu.A3uv j /mu2/3

the quantityL j can be an imaginary number but the quant
z j

(1) given by Eq.~C14! is still a real number and satisfies th

condition limv j→0z j
(1)5uāu. Using Eqs.~C13! and~C14! we

obtain Eq.~35!.
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